Remark on Nonexistence of Global Solutions of the Initial-Boundary-Value Problem for the Nonlinear Klein-Gordon Equation

D. D. Bainov¹ and E. Minchev²

Received October 16. 1993

Sufficient conditions are given so that the solutions of the initial-boundary-value problem for the nonlinear Klein-Gordon equation do not exist for all $t > 0$.

1. INTRODUCTION

Consider the initial-boundary-value problem (IBVP) for the nonlinear Klein-Gordon equation:

$$
u_{tt} - \Delta u + \mu u = f(|u|^2)u, \qquad t \in [0, T), \qquad x \in \Omega, \qquad \Omega \subset \mathbb{R}^n
$$

$$
u(0, x) = u_0(x), \qquad x \in \Omega
$$

$$
u_t(0, x) = u_1(x), \qquad x \in \Omega
$$

$$
u(t, x)|_{x \in \partial\Omega} = 0, \qquad t \in [0, T)
$$

The above problem has various applications in nonlinear optics (especially instability phenomena such as self-focusing), plasma physics, fluid mechanics, etc. We obtain some *a priori* estimates for the solutions of the IBVP under consideration. We give conditions on the initial functions u_0 and u_1 and on the function f such that the solution of the above problem blows up at a finite time $t = T$. The singularity of the solution occurs at $x = 0$ and $is \delta$ -function-like.

[~] Southwestern University, Blagoevgrad, Bulgaria.

²Sofia University, Sofia, Bulgaria.

2. PRELIMINARY NOTES

Let Ω be a bounded domain in \mathbb{R}^n with a smooth boundary $\partial\Omega$ and $\{0, \ldots, 0\} \in \Omega$. We define $G = [0, T) \times \Omega$, $G_0 = [0, T) \times \overline{\Omega}$, where T $> 0, \overline{\Omega} = \Omega \cup \partial \Omega.$

Let us consider the IBVP for the nonlinear Klein-Gordon equation:

$$
u_u - \Delta u + \mu u = f(|u|^2)u \qquad \text{on } G \tag{1}
$$

$$
u(0, x) = u_0(x), \qquad x \in \Omega \tag{2}
$$

$$
u_t(0, x) = u_1(x), \qquad x \in \Omega \tag{3}
$$

$$
u(t, x)\big|_{x \in \partial \Omega} = 0, \qquad t \in [0, T) \tag{4}
$$

where $\mu \ge 0$ is a constant, f is a given real-valued function, and u_0 , u_1 are given complex-valued functions.

We will consider the following Banach spaces of measurable functions with the norms:

$$
L^{q}(\Omega) = \left\{ u(x) : ||u||_{q,\Omega} = \left(\int_{\Omega} |u(x)|^{q} dx \right)^{1/q} < \infty \right\}
$$

$$
W_{q}^{l}(\Omega) = \left\{ u(x) : ||u||_{W_{q}^{l}(\Omega)} = \sum_{j=0}^{l} ||D_{x}^{j}u||_{q,\Omega} < \infty \right\}
$$

$$
\mathring{W}_{q}^{l}(\Omega) = W_{q}^{l}(\Omega) \cap \left\{ u(x) : u(x)|_{x \in \partial\Omega} = 0 \right\}
$$

In the sequel we need the following theorem.

Theorem 1 (Ladyzhenskaya *et al.,* 1967, pp. 84-85). For each function $u \in \mathring{W}^1_2(\Omega)$ we have the inequality

$$
||u||_{2,\Omega} \leq \beta(\text{mes } \Omega)^{1/n} \cdot ||\nabla u||_{2,\Omega}
$$

where

$$
\beta = \begin{cases} \frac{2(n-1)}{(n-2)} & \text{if } n \ge 3 \\ 2 & \text{if } n = 1 \text{ or } n = 2 \end{cases}
$$

We denote by \bar{u} the complex conjugate of u .

3. MAIN RESULTS

First of all we obtain some *a priori* estimates for the solutions of the IBVP (1) – (4) .

Lemma 1. Let $u \in C^2(G) \cap C^1(G_0)$ be a solution of the IBVP $(1)-(4)$. Then

$$
E(t) = C_0 + \int_{\Omega} F(|u(t, x)|^2) dx
$$
 (5)

where

$$
E(t) = ||u_t(t)||_{2,\Omega}^2 + ||\nabla u(t)||_{2,\Omega}^2 + \mu ||u(t)||_{2,\Omega}^2
$$

$$
C_0 = ||u_1||_{2,\Omega}^2 + ||\nabla u_0||_{2,\Omega}^2 + \mu ||u_0||_{2,\Omega}^2 - \int_{\Omega} F(|u_0(x)|^2) dx
$$

$$
F(|u|^2) = \int_0^{|u|^2} f(s) ds
$$

We omit the proof of Lemma 1.

 \overline{a}

Lemma 2. Let the following conditions hold: 1. $u \in C^2(G) \cap C^1(G_0)$ is a solution of the IBVP (1)-(4).

2.
$$
s \cdot f(s) - \int_0^s f(k) dk \ge 2M_1 s - M_2
$$
 (6)

for $s \geq 0$, where

$$
\frac{1}{\beta^2(\text{mes }\Omega)^{2/n}} + \mu \ge M_1 \ge \frac{1}{16} \qquad M_2 \ge 0
$$

are given constants.

Then

$$
\Gamma(t) \le \int_{\Omega} F(|u(t, x)|^2) dx, \qquad t \in [0, T)
$$
 (7)

where

$$
\Gamma(t) = \frac{1}{2} \left\{ (C_1 - C_0')e^{t} + M_2(\text{mes } \Omega) - C_0 \right\}
$$

$$
C_0' = C_0 + M_2(\text{mes } \Omega), \qquad C_1 = \text{Re} \left\{ \int_{\Omega} u_1 \, \overline{u_0} \, dx \right\}
$$

Proof. Let $G_t = \{(\tau, x): \tau \in [0, t], x \in \Omega\}, t < T$. Multiplying both sides of (1) by \bar{u} and then integrating over G_t , we obtain

$$
\int_{G_{l}} (u_{ll}\overline{u} - \Delta u \overline{u} + \mu u \overline{u}) dx d\tau
$$
\n
$$
= \int_{G_{l}} f(|u|^{2}) |u|^{2} dx d\tau
$$
\n
$$
\int_{G_{l}} \left(\frac{d}{dt} (u_{l}\overline{u}) - |u_{l}|^{2} - \nabla \cdot (\nabla u \overline{u}) + |\nabla u|^{2} + \mu |u|^{2} \right) dx d\tau
$$
\n
$$
= \int_{G_{l}} f(|u|^{2}) |u|^{2} dx d\tau
$$
\n
$$
\text{Re} \left\{ \int_{\Omega} u_{l}(t, x) \overline{u}(t, x) dx \right\} - \int_{0}^{t} ||u_{l}(\tau)||_{2,\Omega}^{2} d\tau
$$
\n
$$
+ \int_{0}^{t} ||\nabla u(\tau)||_{2,\Omega}^{2} d\tau + \mu \int_{0}^{t} ||u(\tau)||_{2,\Omega}^{2} d\tau
$$
\n
$$
= \int_{G_{l}} f(|u(\tau, x)|^{2}) |u(\tau, x)|^{2} d\tau dx + C_{1}
$$

On the other hand, (5) implies

$$
Re \left\{ \int_{\Omega} u_{t}(t, x) \overline{u}(t, x) dx \right\}
$$

= $2 \int_{0}^{t} ||u_{t}(\tau)||_{2,\Omega}^{2} d\tau + C_{1} - C_{0}t$
+ $\int_{G_{t}} f(|u(\tau, x)|^{2}) |u(\tau, x)|^{2} d\tau dx - \int_{G_{t}} F(|u(\tau, x)|^{2}) d\tau dx$

Therefore, the inequality (6) yields

$$
\left| \int_{\Omega} u_t(t, x) \overline{u}(t, x) dx \right|
$$

\n
$$
\geq C_1 - C'_0 t + 2 \int_0^t (||u_t(\tau)||_{2,\Omega}^2 + M_1 ||u(\tau)||_{2,\Omega}^2) d\tau
$$

Now we use Young's inequality in order to obtain

$$
2\|u_t(t)\|_{2,\Omega}^2 + \frac{1}{8}\|u(t)\|_{2,\Omega}^2 \ge \left|\int_{\Omega} u_t(t,x)\overline{u}(t,x)\,dx\right|
$$

Since $M_1 \ge 1/16$, we get

$$
2\|u_t(t)\|_{2,\Omega}^2 + 2M_1\|u(t)\|_{2,\Omega}^2
$$

\n
$$
\geq 2\int_0^t (\|u_t(\tau)\|_{2,\Omega}^2 + M_1\|u(\tau)\|_{2,\Omega}^2) d\tau - C'_0 t + C_1
$$
 (8)

Let us define now

$$
X(t) = 2||u_t(t)||_{2,\Omega}^2 + 2M_1||u(t)||_{2,\Omega}^2
$$

Then the inequality (8) has the form

$$
X(t) \geq \int_0^t X(\tau) d\tau - C'_0 t + C_1
$$

which is a Gronwall-type inequality.

Denoting

$$
Y(t) = \int_0^t X(\tau) \, d\tau - C'_0 t + C_1
$$

we obtain

$$
Y'(t) = X(t) - C'_0 \ge Y(t) - C'_0
$$

$$
Y(0) = C_1
$$

Let

$$
Z'(t) = Z(t) - C'_0
$$

$$
Z(0) = C_1
$$

It is easy to prove that $Z(t) \leq Y(t)$ for $t \in [0, T)$. Therefore we conclude that

$$
X(t) \geq Y(t) \geq Z(t) = (C_1 - C'_0)e^{t} + C'_0
$$

In other words,

$$
2\|u_t(t)\|_{2,\Omega}^2 + 2M_1\|u(t)\|_{2,\Omega}^2 \geq (C_1 - C_0')e^t + C_0'
$$

Now (5) and Theorem 1 imply

$$
(C_1 - C'_0)e^t + C'_0
$$

\n
$$
\leq 2C_0 + 2 \int_{\Omega} F(|u(t, x)|^2) dx - 2||\nabla u(t)||_{2,\Omega}^2
$$

\n
$$
- 2\mu||u(t)||_{2,\Omega}^2 + 2M_1||u(t)||_{2,\Omega}^2
$$

\n
$$
\leq 2C_0 + 2 \int_{\Omega} F(|u(t, x)|^2) dx
$$

Therefore, we have the inequality

$$
\Gamma(t) \leq \int_{\Omega} F(|u(t, x)|^2) \, dx, \qquad t \in [0, T) \quad \blacksquare
$$

Theorem 2. Suppose that the following conditions are fulfilled: 1. The conditions of Lemma 2 hold.

$$
|F(s)| \leq \gamma \cdot s^p \tag{9}
$$

where $s \geq 0$, $\gamma > 0$, $p > 1$.

$$
\Gamma(T) > 0 \tag{10}
$$

If

$$
\lim_{\substack{t\to T\\t
$$

then

$$
\lim_{t \to T \atop t < T} ||u(t)||_{q,\Omega} = 0 \quad \text{for} \quad 1 \le q < 2p
$$
\n
$$
\lim_{t \to T} ||u(t)||_{q,(|x| < \epsilon)} = \infty \quad \text{for} \quad 2p < q \le \infty
$$

for each fixed and sufficiently small $\epsilon > 0$.

Proof. By means of Lemma 2 and (9) we have the inequalities

$$
\Gamma(t) \leq \int_{\Omega} F(|u(t, x)|^2) dx \leq \gamma \int_{\Omega} |u(t, x)|^{2\rho} dx
$$

It follows from the HOlder inequality that

$$
\int_{\Omega} |u|^{2p} dx = \int_{\Omega} |u|^p |u|^p dx
$$

\n
$$
\leq \left(\int_{\Omega} |u|^{ps} dx \right)^{1/s} \left(\int_{\Omega} |u|^{pq} dx \right)^{1/q}
$$

\n
$$
= ||u||_{sp,\Omega}^{p} \cdot ||u||_{qp,\Omega}^{p}
$$

where $s \ge 1$, $q \ge 1$, $1/s + 1/q = 1$. Therefore for fixed and sufficiently small $\epsilon > 0$ we have that

$$
\Gamma(t) \leq \gamma \int_{|x| < \epsilon} |u(t, x)|^{2p} \, dx + \gamma \int_{|x| > \epsilon} |u(t, x)|^{2p} \, dx
$$
\n
$$
\leq \gamma \|u(t)\|_{sp, (|x| < \epsilon)}^p \cdot \|u(t)\|_{qp, (|x| < \epsilon)}^p + \gamma \int_{|x| > \epsilon} |u(t, x)|^{2p} \, dx \qquad (11)
$$

where $s \ge 1$, $q \ge 1$, $1/s + 1/q = 1$.

Now if $1 \leq s < 2$, the Hölder inequality enable us to get

$$
||u||_{sp,\Omega}^{2p(1+1/n)}
$$
\n
$$
= \left(\int_{\Omega} |u|^{sp} dx\right)^{2(1+1/n)/s}
$$
\n
$$
= \left(\int_{\Omega} |x|^{-s/2(1+1/n)}|x|^{s/2(1+1/n)}|u|^{sp} dx\right)^{2(1+1/n)/s}
$$
\n
$$
\leq \left(\int_{\Omega} |x|^{-\{[2(1+1/n)/s]-1\}^{-1}} dx\right)^{2(1+1/n)/s-1}
$$
\n
$$
\times \left(\int_{\Omega} |x| \cdot |u|^{2p(1+1/n)} dx\right)
$$
\n
$$
\leq A \left(\int_{\Omega} |x| \cdot |u|^{2p(1+1/n)} dx\right) \to 0 \quad \text{as} \quad t \to T, \quad t < T
$$

Therefore

$$
\lim_{\substack{t \to T \\ t < T}} \|u(t)\|_{q, \Omega} = 0 \quad \text{if} \quad 1 \le q < 2p
$$

It is not difficult to obtain

$$
\left(\int_{\substack{ |x| > \epsilon \\ x \in \Omega}} |u|^{2p} dx \right)^{1+1/n}
$$
\n
$$
= \|u\|_{2p,(1;x) > \epsilon, x \in \Omega}^{2p(1+1/n)}
$$
\n
$$
\leq B \|u\|_{2p}(1+1/n), (1,x) > \epsilon, x \in \Omega)
$$
\n
$$
= B \int_{\substack{ |x| > \epsilon \\ x \in \Omega}} |u|^{2p(1+1/n)} dx
$$
\n
$$
\leq \frac{B}{\epsilon} \int_{\substack{ |x| > \epsilon \\ x \in \Omega}} |x| \cdot |u|^{2p(1+1/n)} dx
$$
\n
$$
\leq \frac{B}{\epsilon} \int_{\epsilon} |x| \cdot |u|^{2p(1+1/n)} dx \to 0 \quad \text{as} \quad t \to T, \quad t < T
$$

It follows now from (11) that

$$
\lim_{\substack{t \to T \\ t < T}} \|u(t)\|_{q, (|x| < \epsilon)} = \infty \quad \text{if} \quad 2p < q \leq \infty \quad \blacksquare
$$

Remark 1. Let $f(s) = s$ and $M_2 \ge 2M_1^2$. Then (6) is fulfilled.

Remark 2. Assume $f(s) = s^{\lambda-1}$, $\lambda > 1$, $s \ge 0$. Then $|F(s)| = (1/\lambda) s^{\lambda}$, $\lambda > 1$, and therefore (9) holds.

Remark 3. The inequality (10) deals with the initial functions u_0 and u_1 . Let us consider the next example:

$$
\Omega = [0, 1], \qquad T = \ln 2, \qquad M_2 = 5, \qquad \mu = 1
$$

$$
F(s) = 100 \int_0^s k \, dk = 50s^2
$$

$$
u_0(x) = x^2 - x, \qquad u_1(x) = \frac{x^2 - x}{4}, \qquad x \in [0, 1]
$$

Then $\Gamma(T) = \Gamma(\ln 2) > 0$.

 $\overline{}$

Remark 4. The assumption

$$
\lim_{\substack{t\to T\\t
$$

of Theorem 2 comes from an experimental point of view. The numerical computations show that the singularity of the solution occurs at $x = 0$ and is δ -function-like (Kelley, 1965; Zakharov *et al.*, 1971). The exact numerical computations of integrals of the type $\int_{\Omega} |u(t, x)|^p dx$ for $t \to T$, $t \leq T$, are difficult due to the presence of such a singularity of the solution. In contrast, integrals of the type $\int_{\Omega} |x| + |u|^p dx$ can be calculated numerically with sufficient exactness for $t \to T$, $t \leq T$.

ACKNOWLEDGMENTS

The authors express their deep gratitude to Dr. D. K. Palagachev for useful discussions and valuable advice.

The present investigation was partially supported by the Bulgarian Ministry of Education and Science under Grant MM-7.

REFERENCES

- Bona, J., and Saut, J. (1993). Dispersive blow-up of solutions of generalized Korteweg-de Vries equations, *Journal of Differential Equations,* 103, 3-57.
- Friedman, A. (1969). *Partial Differential Equations,* Holt, Rinehart & Winston, New York.
- Glassey, R. (1973). Blow-up theorems for nonlinear wave equations, *Mathematische Zeitschrift,* 132, 182-203.
- John, F. (1979). Blow-up of solutions of nonlinear wave equations in three space dimensions, *Manuscripta Mathematica,* 28, 235-268.
- Kelley, P. (1965). Self-focusing of optical beams, *Physical Review Letters,* 15, 1005-1008.
- Ladyzhenskaya, O., Solonnikov, V., and Ural'tseva, N. (1967). *Linearand Quasilinear Equations of Parabolic Type,* Nauka, Moscow [in Russian].
- Reed, M. (1976). *Abstract Nonlinear Wave Equations,* Springer-Verlag, Berlin.
- Tsutsumi, M. (1994). Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrödinger equations, *SIAM Journal of Mathematical Analysis*, 15(2), 357-366.
- Zakharov, V., Sobolev, V., and Synakh, V. (1971). Behaviour of light beams in nonlinear media, *Soviet Physics JETP,* 33, 77-81.