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Remark on Nonexistence of Global Solutions of the 
Initial-Boundary-Value Problem for the 
Nonlinear Klein-Gordon Equation 

D. D. Bainov m and E. Minchev  2 

Received October 16. 1993 

Sufficient conditions are given so that the solutions of the initial-boundary-value 
problem for the nonlinear Klein-Gordon equation do not exist for all t > 0. 

1. I N T R O D U C T I O N  

Consider the initial-boundary-value problem (IBVP) for the nonlinear 
Kle in-Gordon equation: 

u ,  -- AU + ~ u  = f ( l u l 2 ) u ,  t ~ [0, T), 

u(O, x )  = Uo(X), x ~ 12 

u,(O, x) = u~(x), x E 12 

u(t, x)lx~oD = O, t ~ [0, T) 

X E 1 2 ,  1 2 C R "  

The above problem has various applications in nonlinear optics (espe- 
cially instability phenomena such as self-focusing), plasma physics, fluid 
mechanics, etc. We obtain some a pr ior i  estimates for the solutions of  the 
IBVP under consideration. We give conditions on the initial functions u0 and 
u~ and on the function f such that the solution of  the above problem blows 
up at a finite time t = T. The singularity of  the solution occurs at x = 0 and 
is ~-function-like. 
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2. P R E L I M I N A R Y  N O T E S  

Let 1"~ be a bounded domain in R n with a smooth boundary 0lq and 
{0 . . . . .  0} �9 l~. We define G = [0, T) x 12, Go = [0, T) • 1"~, where T 
> 0 , , 0  = 12 u a12. 

Let us consider the IBVP for the nonlinear Klein-Gordon equation: 

ut, - mu + Ixu = f(lul2)u on G (1) 

u(0, x) = u0(x), x �9 lq (2) 

u,(0, x) = ut(x), x �9 12 (3) 

u(t, x)[~ta  = 0, t �9 [0, T) (4) 

where tx >- 0 is a constant, f is a given real-valued function, and u0, u~ are 
given complex-valued functions. 

We will consider the following Banach spaces of measurable functions 
with the norms: 

Lq(~) = (u(x): llUllq.t~ = (ft lu(x)lq dx)t/q < ~ 1 

j=0 

In the sequel we need the following theorem. 

Theorem 1 (Ladyzhenskaya et al., 1967, pp. 84-85). For each function 
u �9 I,],'~(12) we have the inequality 

Ilullz,n <- 13(mes 12)1/.. IlVullz,n 
where 

I 2 ( n -  1) if n-->3 
(n 2) 

f~ 

[ 2 if n = 1 orn  = 2 
% 

We denote by ~ the complex conjugate of u. 
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3. MAIN RESULTS 

First of all we obtain some a priori estimates for the solutions of the 
IBVP (1)-(4). 

C~(Go) be a solution of the IBVP Lemma 1. Let u e C2(G) f'l 
(1)-(4). Then 

E(t) = Co + fn F(lu(t, x)l 2) dx (5) 

where 

E(t) = Ilu,(t)ll2.n + IIVu(t)ll2n + Mlu(t)llZ,n 

Co = Ilu,ll~,. + IlVu011~.. + ~llu011~.o - fo 

~ lul  2 

f ( lu l  2) = f(s) ds 
JO 

We omit the proof of Lemma 1. 

Lemma 2. Let the following conditions hold: 
1. u E C2(G) f3 Cl(Go) is a solution of  the IBVP (1)-(4). 

Io 2. s �9 f(s) - f(k) dk >-- 2Mls - M2 

for s >-- 0, where 

1 
~2(mes ~)2z. 

are given constants. 
Then 

1 
+ b~_> M~ _ > -  M2-->0 

16 

F(t) <- fn F( l u(t, X) l 2) dx, t ~ [0, T) 

1 
F(t) = ~ {(C, - C~)e' + M2(mes 1)) - Co} 

C ~ =  C o +  M2(mes ~) ,  Cl = R e ( (  u, Woo dx~ 
lJ l l  J 

where 

F(luo(x) l 2) dx 

(6) 

(7) 
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Re{  
fo + IIVu(r de + ~ Ilu0")ll~.n da- 

= ( f(lu(7, x)12)lu('r, x)l 2 dT dx + Cl 
aG l 

On the other hand, (5) implies 

R e ( f  a u,(t, x)-~(t, x)dx} 

= 2fs Ilu,(w)ll~.a d'r + Ct  - Cot 

+ IGf(lu('r,x)12)lu('r,x)lZdrdx- fa 
I ! 

Therefore, the inequality (6) yields 

Ia u,(t, x)-a(t, x) dx 

;o >-- Ci - C;t + 2 (llu,('r)ll~.n 

Proof Let G, = {(r, X): "r �9 [0, t], x �9 1)}, t < T. Multiplying both 
sides of (1) by ~ and then integrating o v e r  Gt, we obtain 

fo (u,,-a - Au-ff + Ixu~) dx dT 
I 

= fG f(lul2)lul2 dx d'r 
I 

fo(  ) ~ (u,~) - lut 12 - V �9 (Vu~) + IVul 2 + i,l, lul 2 dxdT 
t 

= Ia f(lul2)lul2 dx d'r 
I 

u,( t ,  x)-~(t, x)  d x  - Ilu,('r)ll~.n d'r 

F(lu('r, x)l 2) aT dx 

+ g ,  llu(T)ll2n) d'r 

Now we use Young's inequality in order to obtain 
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211u,(t)ll2t~ + ~ Ilu(t)ll2.~ ~ ut(t, x)~(t, x) 

Since M~ --> 1/16, we get 

211u,(t)ll~.n + 2Millu(t)ll~,n 

--> 2 (llu,(~')ll~,a + M, Ilu('r)ll~,n) d'r - C; t  + Cl 

Let  us def ine now 

X(t) = 211u,(t)ll~.n + 2M~llu(t)ll2n 

Then  the inequali ty (8) has the fo rm 

Io X(t)  >-- X('r) d'r - C[~t + Cl 

which is a Gronwal l - type  inequality. 
Denot ing 

Y(t) = X('r) d~ - C•t + C~ 

we obtain 

Let  

Y ' ( t )  = X ( t )  - C~  >- Y ( t )  - C ~  

Y(0) = Ci 

(8) 

In other words,  

2[lu,(t)ll2.n + 2M~llu(t)ll~.n ~ (C; - C~)e' + C~ 

Z' ( t )  = Z(t)  - C~ 

Z(O) = CI 

It is easy  to p rove  that Z(t)  <- Y(t) for t ~ [0, T). Therefore  we con-  
clude that 

X(t)  >- Y(t) >- Z(t)  = (Ci - C~)e t + C~ 
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Now (5) and Theorem 1 imply 

(C I - -  C~)e t + C~ 

<- 2Co + 2 ft~ F(lu(t, x)l 2) dx - 211Vu(t)ll~.~ 

- 2 o ~ l l u ( t ) l l ~ . n  + 2M, llu(t)ll~,n 

<-- 2C0 + 2 Ifl F(lu(t, x)l 2) dx 

Therefore, we have the inequality 

F(t) --< It~ F(lu(t, x) l 2) dx, t ~ [0, T) �9 

Theorem 2. Suppose that the following conditions are fulfilled: 
1. The conditions of Lemma 2 hold. 

2. I F(s) l < "y �9 s p 

where s --> 0, "y > 0 ,  p >  1. 

3. F(T) > 0 (10) 

If 

then 

limr~r In Ixl �9 lul 2p(l+lln) dr. = 0 
t < T  

lim Ilu(t)llq,l) : 0 for 1 <-- q < 2p 
t -~  T 
I < T  

lim Ilu(t)llq.(,x,<,) = oo for 2p < q -< 
t---> T 
t < T  

for each fixed and sufficiently small r > 0. 

Proof. By means of Lemma 2 and (9) we have the inequalities 

r( t )  <- fft F(lu(t, X)I 2) dx ~-- ~ f[l lu(t, X)I 2p dx 

It follows from the HOlder inequality that 

(9) 
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N lul2p dx = ftl lulPlulP dx 

<- (ffl lulpS dx)lls(ff lulPq dx)l/q 

--Ilul~p,n " I l u l l ~ p , n  

where s --> 1, q >- 1, l/s + llq = 1. Therefore for fixed and sufficiently 
small e > 0 we have that 

F( t ) -<~ '  I lu(t,x)12p dx + ~l f 
xl<e 

xeD. 

< ~ l l u ( t ) l l ~ p . 0 x , < , ~  �9 Ilu(t)llgp.o~,<E) + "Y 

l u(t, x) 12p dx 

f 
IXI>E 
X E 1"), 

lu(t, x)l zp dx (11) 

w h e r e s - >  l , q - >  1, l/s + l/q = 1. 
Now if 1 -< s < 2, the H61der inequality enable us to get 

2ptl+ l/n) u sp,~ 

= (fn lul,P dx) 2('+'/"'/s 

=(ffllxl-S/2(t+'/n)lxlS/2('+'/n),ulSpdx) 2('+''n'ss 

~(ftlxl-l[2(l+t/n)/sl-,}-'dx) 2('+'/n~s-' 

•  ,xl'lul2ptt+'/n) dx) 

_ < a ( f a l x l .  [ul2p(l+lln) dx)----~O as t---~T, t < T  

Therefore 

limliu(t)iiq,f~=o if l - < q < 2 p  
t---~ T 
t < T  
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It is not difficult to obtain 

l + l / n  

I x l ~  
xaD.  

, ,  2 p ( l + l l n )  _ 
u 2p,(Ixl>c;x Ell)  

- -  + l/nl,(Ixl>~;x ~ n )  < n l l u l l ~ / [  + ~/n 

= B f lul 2p(L+L/nl dx 

Jxl>~ 

--< - Ixl �9 lul 2p(l+t/') dx 
E 

IxJ>~ 
XE~ 

B I I uleP(l§ - Ixl �9 dx ~ 0 

x ~ N  

It fo l lows now f rom (11) that 

as t - -~T ,  t < T  

l im Ilu(t)llq.oxK~ = oo if 2p < q <- oo �9 
t.-.-~ T 

t < T  

Remark 1. Let  f (s)  = s and M2 --> 2M~. Then  (6) is fulfil led. 

Remark 2. A s s u m e f ( s )  = s x- I ,  k > 1, s >--- 0. Then  IF(s) l  = ( l / k )  s x, 
k > 1, and therefore (9) holds.  

Remark 3. The inequali ty (10) deals with the initial funct ions  Uo and ut. 
Let  us consider  the next  example :  

= [0, 1], T = l n 2 ,  M 2 = 5 ,  ~ =  1 

F(s) = 100 k dk = 50s 2 

X 2 - - X  
Uo(X) = x 2 - x ,  ut(x) - - - ,  x ~ [0, 1] 

4 

Then  F(T)  = F(ln 2) > 0. 
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R e m a r k  4. The assumption 

l i m  ~ Ixl �9 lul 2ptl+l/n) dx = 0 
t--> T 3a 
t<T 

of Theorem 2 comes from an experimental point of  view. The numerical 
computations show that the singularity of the solution occurs at x = 0 and 
is ~-function-like (Kelley, 1965; Zakharov et al., 1971). The exact numerical 
computations of  integrals of  the type fn lu(t, x)l p dx for t --+ T, t < T, are 
difficult due to the presence of such a singularity of the solution. In contrast, 
integrals of the type f n  Ixl �9 lul p dx can be calculated numerically with 
sufficient exactness for t --+ T, t < T. 
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